skip to main content


Search for: All records

Creators/Authors contains: "Forbrich, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report the detection of the ground state rotational emission of ammonia, ortho-NH3 (JK = 10 → 00) in a gravitationally lensed intrinsically hyperluminous star-bursting galaxy at z = 2.6. The integrated line profile is consistent with other molecular and atomic emission lines which have resolved kinematics well modelled by a 5 kpc-diameter rotating disc. This implies that the gas responsible for NH3 emission is broadly tracing the global molecular reservoir, but likely distributed in pockets of high density (n ≳ 5 × 104 cm−3). With a luminosity of 2.8 × 106 L⊙, the NH3 emission represents 2.5 × 10−7 of the total infrared luminosity of the galaxy, comparable to the ratio observed in the Kleinmann–Low nebula in Orion and consistent with sites of massive star formation in the Milky Way. If $L_{\rm NH_3}/L_{\rm IR}$ serves as a proxy for the ‘mode’ of star formation, this hints that the nature of star formation in extreme starbursts in the early Universe is similar to that of Galactic star-forming regions, with a large fraction of the cold interstellar medium in this state, plausibly driven by a storm of violent disc instabilities in the gas-dominated disc. This supports the ‘full of Orions’ picture of star formation in the most extreme galaxies seen close to the peak epoch of stellar mass assembly.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We present a newly enlarged census of the compact radio population towards the Orion Nebula Cluster (ONC) using high-sensitivity continuum maps (3–10 $\mu$Jy beam−1) from a total of ∼30-h centimetre-wavelength observations over an area of ∼20 × 20 arcmin2 obtained in the C-band (4–8 GHz) with the Karl G. Jansky Very Large Array (VLA) in its high-resolution A-configuration. We thus complement our previous deep survey of the innermost areas of the ONC, now covering the field of view of the Chandra Orion Ultra-deep Project (COUP). Our catalogue contains 521 compact radio sources of which 198 are new detections. Overall, we find that 17 per cent of the (mostly stellar) COUP sources have radio counterparts, while 53 per cent of the radio sources have COUP counterparts. Most notably, the radio detection fraction of X-ray sources is higher in the inner cluster and almost constant for r > 3 arcmin (0.36 pc) from θ1 Ori C, suggesting a correlation between the radio emission mechanism of these sources and their distance from the most massive stars at the centre of the cluster, e.g. due to increased photoionisation of circumstellar discs. The combination with our previous observations 4 yr prior lead to the discovery of fast proper motions of up to ∼373 km s−1 from faint radio sources associated with ejecta of the OMC1 explosion. Finally, we search for strong radio variability. We found changes in flux density by a factor of ≲5 within our observations and a few sources with changes by a factor >10 on long time-scales of a few years. 
    more » « less
  3. ABSTRACT A search of the first Data Release of the VISTA Variables in the Via Lactea (VVV) Survey discovered the exceptionally red transient VVV-WIT-01 (H − Ks = 5.2). It peaked before March 2010, then faded by ∼9.5 mag over the following 2 yr. The 1.6–22 μm spectral energy distribution in March 2010 was well fit by a highly obscured blackbody with T ∼ 1000 K and $A_{K_s} \sim 6.6$ mag. The source is projected against the Infrared Dark Cloud (IRDC) SDC G331.062−0.294. The chance projection probability is small for any single event (p ≈ 0.01–0.02), which suggests a physical association, e.g. a collision between low mass protostars. However, blackbody emission at T ∼ 1000 K is common in classical novae (especially CO novae) at the infrared peak in the light curve due to condensation of dust ∼30–60 d after the explosion. Radio follow-up with the Australia Telescope Compact Array detected a fading continuum source with properties consistent with a classical nova but probably inconsistent with colliding protostars. Considering all VVV transients that could have been projected against a catalogued IRDC raises the probability of a chance association to p = 0.13–0.24. After weighing several options, it appears likely that VVV-WIT-01 was a classical nova event located behind an IRDC. 
    more » « less